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ABSTRACT 
There are two established approaches to represent 

constraints: the body-bar (BB) and the bar-joint (BJ) graph that 

can be used in machine theory. They are referred to as 

topological graphs as they describe the relation between 

members of a mechanism. It is known, however, that in many 

cases these graphs are not unique. Hence any method for 

kinematic analysis or mobility determination that is based on 

these topological graphs is prone to failures. 

In this paper a generalized and unified concept for the 

representation of constraints in mechanisms is introduced. It is 

first shown in which situations BB and BJ representations fail 

to correctly represent the mechanism. The novel constraint 

graph is then derived starting from the most general model of 

constrained rigid bodies. It is shown how BB and BJ graphs 

result as special cases. Therefore the new graph representation 

is called the ‘mixed graph’. It is further shown how this novel 

mixed constraint graph allows for computation of the correct 

generic (topological) mobility, and thus overcomes the 

problems of BB and BJ representations.  
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1. INTRODUCTION 
Methods for determination of topological mobility rely on 

a graph representation of the mechanism’s constraints. As such 

the topological criteria like the Kutzbach-Grübler formula [1], 

or the combinatorial pebble game algorithm [2,5,7,8,9,10,17] 

are well-known. They fail, however, if the constraints are not in 

one-one correspondence with the mechanism kinematics. 

Moreover it is known that the established graph representations 

(body-bar and bar-joint graphs) do not allow for a unique 

representation of the constraints. This is a sever obstacle for 

any method that aims to compute the mobility of general 

mechanisms. Graph representations of mechanisms have been 

used in various contexts [18,19], and recently it has been used 

for topology representation of metamorphic linkages [20,21]. 

The non-uniqueness problem is addressed in this paper. It 

is shown that the established graph representations can lead to 

fallacious conclusions about the mobility of a mechanism. To 

overcome this problem the constraint graphs are derived from 

the general frame representation. The origin of the BB and BJ is 

revealed and related to this setting. A novel constraint graph is 

derived from the general formulation combining BB and BJ. It 

is called the ‘mixed graph’ (MG). 

A constraint graph is an abstract representation of relations 

between certain elements that kinematically represent a 

mechanism. In the known BB and BJ graph these elements 

represent bodies and frames, respectively.  

 

2. MODELLING CONSTRAINTS IN MECHANISMS 
In the most general setting members of a mechanism are 

represented individually as free rigid bodies in space (or 

possibly in some subgroup of Euclidean motion depending on 

the mechanism, such as planar, spherical, or spatial).  

Then a rigid body is kinematically represented by reference 

frame attached to it. Interconnections constraining the motions 

are modeled by a frame. Hence the frames are constituent 

modeling elements that allow for unique representation of a 

general mechanism.  
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Figure 1: a) 4-bar mechanism, b) introduction of frames as principle 

kinematic objects 
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Figure 1a) shows this for a 4-bar mechanism connected to the 

ground. Each one of the three movable links is represented by a 

body-fixed reference frame (RFR) as shown in Figure 1b). 

Upon this general kinematics modeling various constraint 

graphs can be introduced, as shown in this paper, including BB 

and BJ graphs. The important, although well-known, fact is that 

the different constraint systems can have the same mechanical 

realization. 

 

 

3 ESTABLISHED CONSTRAINT GRAPHS 

3.1 Bar-Joint (BJ) Constraint Graph 

A bar-joint graph (BJ) is a graph 𝐺(𝐸, 𝑉𝐽)  whose vertices 

correspond to points on the mechanism’s bodies, and the edges 

to translation constraints between these points. 

That is, BJ graphs can represent mechanisms with revolute 

joints in 2D, spherical in 3D, and general prismatic joints. 

In the mechanism shown in Figure 2a) all the joints are lower 

pairs. The binary links 1 and 2 impose a distance constraint 

between the points O1 and A, and A and B, respectively. The 

slider (B) is treated as a point, and prismatic joint 3 imposes 

one translation constraint. 

 
 

 

 

 

An advantage of the BJ graph is that it allows representing 

mechanisms having multiple joints (see section 4). 

 

Limitations: The kinematic objects (vertices) used in BJ 

graphs are points, and thus BJ graphs can only represent 

distance constraints between points at the bodies of a 

mechanism. In fact the term 'body-bar' stems from the rigidity 

theory of structures where each edge represents a mass-less bar 

imposing a scalar distance constraint between two bodies. 

 

 

3.2 Body-Bar (BB) Constraint Graph 
A body-bar graph is graph 𝐺(𝐸, 𝑉𝐵) whose vertices correspond 

to the bodies and the edges represent general scalar constraints 

between the bodies. In particular, an edge can stand for a 

distance constraint or a rotation constraint. An edge exists 

between exactly two bodies and there can be several edges 

depending on the type of the turning pair. For instance, in the 

BB graph in Figure 3b) there are two edges between bodies 1 

and 2 since the kinematic pair is of type revolute joint. Both 

constraints account for translational constraints. There is a gear 

pair, higher pair, between bodies 2 and 3 thus only one edge 

appears between vertices 2 and 3. 

The advantage of BB graphs is that they can represent general 

constraints between bodies of a mechanism, including higher 

kinematic pairs. 

 

 
 

 

 

 

Limitations: BB graphs cannot uniquely represent mechanisms 

with multiple joints (see section 4). 

 

 

4 THE MULTIPLE JOINT PROBLEM 

Many mechanisms comprise several revolute joints whose 

axes are on a common line or spherical joints with common 

center of rotation. Such joints are called multiple joints. These 

joints can be represented uniquely with BJ graphs. However, BJ 

graphs cannot be used to represent general joints or general 

constrains. BB graphs on the other hand cannot uniquely 

represent the constraints of a mechanism if it contains multiple 

joints since there are different ways to choose the kinematic 

pairs. 

 

For instance, the mechanism in Figure 4a) has three different 

BB graphs all corresponding to the same mechanism. In Figure 

4b) vertex 2 corresponds to a ternary link, in Figure 4c) and d) 

vertex 3 and 4, respectively, corresponds to a ternary link. This 

has consequences for the ability to correctly determine the 

mobility. 

To overcome this problem in the next two sections a novel 

constraint graph is proposed that combines the advantages of 

BB and BJ graphs. 
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Figure 2: Example of a bar-joint constraint graph of a 

mechanism. a) The mechanism. b) The corresponding bar-joints 

graph. 

Figure 3: A gear train (a) and its corresponding body-bar graph (b). 
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5 GENERAL KINEMATIC CONSTRAINT GRAPHS 
5.1 The General Concept 
The concept of constraint graphs is generally applicable to 

represent interrelations within a mathematical model. The basic 

idea of constraint graphs is to represent the existence of 

relations between model variables by means of a graph. 

Moreover the graph representation of relations between objects 

in mathematical models is the central idea behind non-causal 

bond-graph modeling approach [22]. 

In the context of mechanism kinematics the model variables are 

the DOFs of frames used to model bodies and interactors 

(joints, contacts, etc.), and the relations are the constraints 

imposed by the interactors. This is a powerful concept that 

accounts for holonomic and non-holonomic as well as bilateral 

and unilateral constraints. The graph only indicates the 

presence of constraints but not the particular type (translational, 

rotational). 

A general kinematic constraint graph is a vertex-labeled 

undirected graph denoted 𝐺(𝐸, 𝑉, 𝑝𝑒𝑏), where 𝑝𝑒𝑏 is a weight 

function that assigns to a vertex 𝑣 ∈ 𝑉 the weight 𝑝𝑒𝑏(𝑣). A 

vertex 𝑣 represents a kinematic modeling element (generally a 

frame but can also be a point). The weight is the DOF that is 

currently assigned to the object represented by vertex 𝑣. 

Initially, when constructing the graph, this is the DOF of the 

object when it is unconstrained (i.e. unconstrained frame or 

point). That is, the constraint graph in its initial setup represents 

all frames in the kinematic model together with the number of 

constraints between them. The number of edges of 𝐺 is denoted 

with 𝑒(𝐺) = |𝐸|, and the number of vertices with 𝑣(𝐺) = |𝑉|. 
 

Now the constraint graph construction involves two steps:  

1. Assigning kinematic objects (frames and points) 

2. Introducing the constraints between the kinematic objects 

In order to model the kinematics an arbitrary number of 

(possibly redundant) reference frames and points can be 

introduced as long as these collectively describe the 

mechanism's kinematics. In the most general setting a rigid 

body is kinematically represented by a body-fixed reference 

frame subjected to certain constraints. A joint connecting two 

bodies (or a general constraint between the bodies) is 

represented by a body-fixed frame on each body, and a set of 

constraints according to the joint mobility. In special cases, like 

spherical joints in spatial mechanisms and revolute joints in 

planar mechanisms for instance, the joints do not impose 

orientation constraints and it is sufficient to introduce joint 

reference points instead of frames. For example in planar 

mechanisms the configuration of a frame, i.e. a body, is given 

by two position coordinates and a rotation angle. In the plane a 

body can also be represented by two points fixed to it. That is, 

there are two position coordinates for each point which are 

subject to one distance constraint, hence only three of the four 

position coordinates are independent. The same argument 

applies to three points for bodies in spatial mechanisms. 

Consequently frames and points can be considered as the 

building blocks for kinematics modeling, and these are the 

objects associated to the vertices of the constraint graph. It is 

important to emphasize the generality of this approach, and that 

the BB and BJ graphs are just special cases. In fact, if only 

body-fixed reference frames are used, this leads to the BB, and 

if only points are used, leads to the BJ representation discussed 

above. 

In order derive the BJ and BB the general graph must be 

reduced without losing information. To this end a reduction rule 

is introduced next. 

 

5.2 Reduction Rule for Constraint Graphs 
A general constraint graph can be simplified noticing that the 

DOFs of a vertex that is only connected to two other vertices 

can be uniquely eliminated. 

 

Reduction rule: Let 𝑥 be a vertex that has exactly two adjacent 

vertices, 𝑦 and 𝑧. Let peb(𝑥) be the number of free pebbles 

assigned to vertex 𝑥 and  𝑛𝑒(𝑢, 𝑣) stands for the number of 

edges/constraints between 𝑢 and 𝑣. Then do 

1. Remove vertex 𝑥 and all its incident edges, 

2. Add edges between the two neighbors 𝑦 and 𝑧  

according to the following relation: 

     𝑛𝑒(𝑦, 𝑧) = 𝑛𝑒(𝑦, 𝑥) + 𝑛𝑒(𝑥, 𝑧) − 𝑝𝑒𝑏(𝑥).              
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Figure 4: A mechanism (a) and its three different possible BB 

graphs (b), (c), and (d). 
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This reduction rule hence determines the constraints between 

vertices 𝑦 and 𝑧 when the mobility of vertex 𝑥 is incorporated. 

The significance of this reduction rule is that it allows deriving 

the well-known BB and BJ graphs as special cases from the 

general graph, and more importantly it gives rise to a novel 

mixed graph that will be introduced in the next section. Before 

three special cases are considered. 

 

 
Case 1: Bodies and Joints represented by Frames 

This is the most general approach. Each body is equipped with 

a reference frame, and for each joint a frame on the connected 

bodies is introduced. Figure 1b) shows this for the planar 4-bar 

mechanism. Each frame constitutes a vertex of the constraint 

graph. In the plane each unconstrained frame has 3 DOF, i.e. 

𝑝𝑒𝑏(𝑣) = 3 for all vertices. The revolute joints impose two 

constraints. The rigid connection of frames at the same body 

gives rise to three constraints. The constraint graph is shown in 

Figure 5. Notice that the weights of vertices are represented by 

'pebbles' rather than integer numbers in anticipation of the 

combinatorial algorithm that will be used for mobility 

computation [17]. 

This graph as it stands is a proper representation of the 4-bar 

kinematics, but it involves an apparent number of redundant 

frames. Application of the reduction rule to the vertices 

A1,A2,B2,B3,C1,D1 representing joint frames leads to the BB 

graph in Figure 6c). 

As already discussed the specific characteristics of the BB 

graph is that the relative configuration of adjacent bodies is 

constrained by means of joint constraints, and that this relative 

configuration cannot be uniquely defined for multiple joints. 

 

 
Figure 5: BB graph for the modeling of 4.bar in Figure 1b) 

 

 

 
Case 2: Bodies represented by Frames, Joints by Points 
The planar 4-bar only comprises revolute joints that for planar 

mechanisms only impose translation constraints. Hence the 

joint frames can be replaced by points, and the joints be 

modeled as constraints between these body-fixed points as 

shown Figure 6a). The bodies themselves are still represented 

by reference frames. Figure 6b) shows the corresponding 

constraint graph. This graph can be reduced applying the 

reduction step in two different ways: 

I) Elimination of vertices representing frames: Applying the 

reduction step to the frame-vertices yields the BJ constraint 

graph in Figure 6d), which only comprises point-vertices.  

II) Elimination of all joint-vertices: The reduction rule applied 

to the point vertices A and B yields the BB graph in Figure 6c). 

 
Figure 6: Bodies represented by frames and joints by points.  

a) The constituent elements of the four-bar link. b) Pebbles 

associated to each vertex. c) BB  graph. d) BJ graph. 

 

 
 
Case 3: Joints represented by Points 

Since at least two joints are attached to the bodies it is sufficient 

to represent the joint configurations.  

The reduction variant I) in the previous section shows that for 

revolute joint mechanism the body-fixed reference frames can 

be omitted and the reference points for a joint be identified 

leading eventually to the BJ graph. If each body is connected to 

at least 2 joints in 2D, and 3 joints in 3D, it is sufficient to 

introduce the joint-vertices and to omit body frames. This is the 

crucial observation that allows for defining unique constraint 

graphs for multiple joints. 

 
Apparently when starting from the most general description of 

unconstrained bodies a number of redundant reference 
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frames/points are introduced which can be eliminated be the 

reduction rule. On the other hand BB and BJ a priori do not 

involve such redundant elements. To signify this, the following 

is introduced: 

Definition: A constraint graph is vertex reducible if there are 

two adjacent vertices 𝑥, 𝑦 with either peb(𝑥) = 𝑛𝑒(𝑥, 𝑦) or 

peb(𝑦) = 𝑛𝑒(𝑥, 𝑦).  

As such BB and BJ are not vertex reducible (assuming joints 

with DOF>0). 

Using point-vertices (as in example 3) is only possible if the 

joints impose position constraints only, i.e. revolute in 2D and 

spherical in 3D. On the other hand it is only necessary to use 

reference points for multiple joints, which can only be 

revolute/spherical.  

In conclusion reference points and reference frames can be 

introduced as deemed appropriate, but reference points must be 

used to model multiple joints.  

This leads to a mixed constraint graph. 

 

 

6 NOVEL CONSTRAINT GRAPH: MIXED GRAPH (MG) 
The foregoing examples show the freedom in representing the 

mechanism kinematics by various forms of a generalized 

constraint graph. This generality is a valuable feature, but the 

most crucial property expected from a constraint representation 

is that it is unique in the sense that for the introduced kinematic 

reference objects (frames, points) the constraint system (i.e. the 

graph) is unique. As discussed in section 4 this is not the case 

when representing multiple joints by reference frames. In order 

to ensure uniqueness a mixed constraint graph is introduced as 

basis for mobility analysis.  

Definition: A mixed constraint graph is a constraint graph 

G = (VB ∪ VJ, E, peb) where multiple joints are represented by 

reference points. Here v ∈ VB represents the reference frame of 

a rigid body, and v ∈ VJ the reference point of a joint. 

 

Notice that in the mixed graph only multiple joints must be 

modeled by reference points, while other revolute joints can be 

modeled as desired. The important point why the mixed graph 

is important is that allows treating multiple joints while it can 

also uniquely represent the general constraints or joints.  

 

Example: In the example, in Figure 7 the multiple joint B as 

well as joints A, C, E are modeled by reference points. Clearly 

with the mixed graph the limitations of the BJ and BB 

constraint graphs can be overcome by combining these two 

representations. 

 

 
 

 
 

7. APPLICATION OF THE MIXED GRAPH 

The MG allows for unique representation of the constraints in a 

mechanism. Hence it provides a graph representation of a 

mechanism that can be used as basis for combinatorial methods 

to compute the mobility. Such a method is the pebble game 

algorithm [1-10]. This algorithm has been developed and there 

is a variant for BJ and BB graphs. In these forms it cannot be 

applied directly to the MG representation. Therefor the 

algorithm must be amended so be able to process a mixture of 

BJ and BB. A preliminary extension toward such a mixed 

pebble game was reported in [17,23]. This is not in the scope of 

this paper and will be reported in a forthcoming publication. In 

this paper a general approach to constraint modeling has been 

proposed that will be the basis for such an extended algorithm. 

 

8. CONCLUSIONS 
A novel mixed graph representation of constraints in 

mechanisms has been proposed that overcomes the non-

uniqueness problem of the established constraint graph 

representation. It combines the advantages of the body-bar and 

bar-joint constraint graphs since it allows representing general 

constraints (lower pairs, higher pairs, non-holonomic 

constraints). Hence this graph will allow for a correct 

determination of mobility using the combinatorial pebble game 
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algorithm. The later can, however, not be applied in its current 

form but has to be modified to work with the mixed constraint 

graph. This will be reported in a forthcoming paper. In this 

paper it is further shown how the established BB and BJ graphs 

can be constructed as special cases from a general modeling of 

the mechanism kinematics in terms of body-fixed reference 

frames. 
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